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Performance on Emerging Architectures

Enable science that was not previously possible, in a cost-effective way!

Performance & 

Portability

Architecture Programming Environment

Domain Expert
HPC Expert

 GPU: NVIDIA, AMD

 CPU: ThunderX2, Fujitsu

 VECTOR: NEC Vector 

Engine

 Works closely with HPC expert

 Enable modifications to the  

computations to match the 

underlying architecture

 Works closely with domain 

expert

 Understand computer 

architecture and 

programming environments

 NATIVE: Fortran/C/C++, CUDA, HIP

 PORTABLE: OPENCL, SYCL, OCCA, 

IntelOneAPI, Kokkos, Raja, ...

 Works closely with HPC expert

 Enable modifications to the  

computations to match the 

underlying architecture



Porting a Large Application to Diverse Architectures

o Many-core CPU (e.g., Intel Xeon, Marvell ThunderX2)

o Parallelization across many cores

o Memory and cache utilization

o Vectorization

o NUMA issues

o Accelerator: GPU (e.g., NVIDIA Tesla V100/A100 and AMD MI50/60)

o Accelerator Issue (Heterogeneous computing)

o Fine grain data parallelism

o Memory and cache utilization

o SIMT architecture (Warp/Subgroup)
Requires offloading almost 
the full application before 
you see performance benefit



Two Dimensions of Performance Portability 

o Target HPC Architecture

o Multicore CPU: Intel Xeon, Marvell ThunderX2, Fujitsu A64FX, NEC Vector Engine (large vector)

o GPU:  NVIDIA V100/A100, AMD MI50/MI60, Intel Xe

o Programming Environment 

o Support CPU and GPU:  OpenACC, OpenMP, SYCL, OCCA, Kokkos, RAJA, etc.

o A single code base that supports both CPU and GPU. The single code base may query the underlying 

system and take different paths in the code depending on the underlying architecture (e.g. SYCL)

o Support GPU only:  CUDA, HIP

Can we maintain optimal performance on a given architecture when we code a computation using a 

different programming environment?

Can we maintain optimal performance on different architectures when we use a single code base  

written using a programming environment that supports diverse architectures (e.g. SYCL)? 

Questions:
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FUN3D Linear Solver

• FUN3D solves the Navier-Stokes equations using implicit time integration on general unstructured grids

• An approximate nearest-neighbor linearization of the residual equations for each control volume gives 

rise to a large tightly-coupled system of block-sparse linear equations

Multicolor point-implicit relaxation of large 

linear system of equations. Focus of the 

talk will be on this kernel; timings given for 

single sweep over global system.



FUN3D  Multicolor Linear Solver

o Implicit scheme results in linear systems of equations:

o 𝐴 Δ𝑞=𝑏, 𝐴 is a sparse 𝑛×𝑛 block matrix for 𝑛 grid points; block is of size 𝑛𝑏×𝑛𝑏

o Matrix 𝐴 is segregated into two separate matrices:

o 𝐴≡𝑂+𝐷, where O and 𝐷 represent the off-diagonal and diagonal blocks of 𝐴

o Prior to performing each linear solve, each diagonal block 𝐷 is decomposed in-place 

into lower and upper triangular matrices

o Solver Challenges

o With an average of few off-diagonal blocks per row, the arithmetic intensity of 

the computation is quite low (≈0.5 )  memory bound

o The number of rows associated with a color can vary significantly. 

Consequently the amount of parallelism available for different colors varies 

significantly.

Block-sparse

matrix-vector product



Optimization Issues for Multicolor Linear Solver

o To understand performance portability issues associated with a particular kernel, it is 

critical to understand the optimal performance that may be achieved on each target 

architecture.  

o This typically requires a specific implementation targeting each individual architecture, leveraging 

low-level approaches that are not portable.  

o Optimized implementations of the linear solver kernel have been established for all of the target 

platforms considered.

• To achieve optimal performance on the Intel Xeon Skylake and Marvell ThunderX2 CPUs, kernels were developed using

AVX-512 and NEON vector intrinsics, respectively.

• An optimized CUDA implementation is used for the NVIDIA GPU architecture.

• To develop an optimal implementation for the AMD GPU, the CUDA kernel has been transformed to a HIP implementation with 

specific customizations targeting the AMD architecture.

• Several higher-level programming models are currently being explored to provide a single-source approach capable of achieving 

reasonable performance across architectures.



Optimization on Intel Skylake  

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION 

EFFORT

% OF PEAK 

MEMORY 

BANDWIDTH

TIME

Intel Skylake 

6148

(Dual Socket)

• NUMA: minimize memory traffic 

between two NUMA nodes

 

• Vectorization: utilization of the Intel 

vector unit based on AVX-512

 

• Cache and memory utilization	

• Use of hybrid implementation, MPI + 

OpenMP, with an MPI rank on each 

NUMA node and OpenMP threads for 

cores within a node

 

• For vectorization, map a complete non-

zero block to two 512-bit vectors

 

• Use of vector loads and cache 

prefetching 

 

• Language: C and Intel Vector Intrinsics

Hard 84% 11 ms



Optimization on ARM ThunderX2  

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION 

EFFORT

% OF PEAK 

MEMORY 

BANDWIDTH

TIME

ARM Thunder X2 

CN 9975 

(Dual Socket)

• NUMA: minimize memory traffic 

between two NUMA nodes

 

• Vectorization: utilization of the 

NEON vector unit

 

• Cache and memory utilization	 

• Use of Hybrid implementation, MPI + 

OpenMP, with an MPI rank on each 

NUMA node and OpenMP threads for 

cores within a node 

 

• For vectorization map partial columns 

of a non-zero block to a 128-bit vector 

 

• Use of vector loads and cache 

prefetching

 

• Language: C and NEON Vector 

Intrinsics	 

Moderate 62% 11 ms



Optimization on NVIDIA Tesla V100 GPU

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION 

EFFORT

% OF PEAK 

MEMORY 

BANDWIDTH

TIME

NVIDIA Volta 

V100

• GPU global memory and shared 

memory utilization

• Enable fine-grained parallelism for 

sparse computation

• Minimize thread divergence - 

effective SIMT execution using warp 

of 32 threads

• Use of advanced instructions that 

share data within a warp without 

going through memory

•  Perform coalesced memory loads by 

mapping a warp of 32 threads to a non-

zero block of 25 elements 

• A warp processes a row block and 

aggregate partial results from different 

threads using shuffle instruction 

• Use of shared memory to store 

intermediate result and also for storing 

elements of diagonal blocks

• Language: C/C++ CUDA

Hard 73% 3.3 ms



Optimization on AMD MI50 GPU

ARCHITECTURE CRITICAL PERFORMANCE ISSUES IMPLEMENTATION
OPTIMIZATION 

EFFORT

% OF PEAK 

MEMORY 

BANDWIDTH

TIME

AMD Instinct 

MI50

• GPU global memory and shared 

memory utilization

• Enable fine-grained parallelism for 

sparse computation

• Minimize thread divergence - 

effective SIMT execution using 

wavefront of 64 threads

• Use of advanced instructions that 

share data within a wavefront 

without going through memory

•  Perform coalesced memory loads by 

mapping a wavefront of 32  threads to 

process two row-blocks with first 32 

threads of the wavefront are mapped to 

a non-zero block of the first row, and 

the rest of the 32 threads are mapped 

to a non-zero block of the second row

• Use of shared memory to store the 

intermediate result and also for storing 

elements of diagonal blocks

• A 1/2 wavefront processes a row 

block and aggregate partial results from 

different threads using shuffle 

instruction

• Language: HIP, C/C++ runtime API. HIP 

code is generated by transforming 

optimized CUDA code

Easy (starting 

from optimized 

CUDA code)

51% 4.3 ms
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Performance Portability:  Solver Kernel Using Different Programming 
Environments on V100

SYCL

CUDA

OPENACC

OCCA



Portability vs Performance Portability

Intel Xeon

Skylake

Marvell 

ThunderX2

NVIDIA Tesla

V100

NVIDIA Tesla 

A100

AMD

MI50

OpenACC - -
1.62

Easy / Hard

1.15

Easy / Hard
-

HIPSYCL - -

1.62

Moderate / 

Hard

- -

HIP - -

1.59

Moderate / 

Hard

-

2.09

Moderate / 

Hard

SYCL For 

CUDA
- -

1.62

Moderate / 

Hard

- -

CUDA - -

1.59

Moderate / 

Hard

1.00

Moderate / 

Hard

-

Vector 

Intrinsics

5.38

Hard / Hard

5.38

Hard / Hard
- - -

OCCA - -

1.59

Moderate / 

Hard

-

2.09

Moderate / 

Hard

• Numeric value indicates 

relative speed (lower is 

better)

• Ratings indicate effort for 

implementation / optimization

• Red indicates programming 

model that provides best 

performance for selected 

architecture

• Very much a work in 

progress; more to come



Conclusions

• Scientific kernels can greatly benefit from emerging high-performance architectures such as ARM, 

NVIDIA and AMD GPUs.

• For achieving performance on these architectures it is necessary to put effort in careful planning and 

optimization of computationally intensive kernels. 

• For optimizing code on a given architecture, it is necessary to understand the underlying architecture. 

• The general portability framework hides the architecture from the application developer and tries to generate 

optimized code for a given architecture. However, a number of applications require a restructuring of code 

which is difficult to do in an automated way or by a run-time environment. 

• For these applications, it is much easier to restructure the code at the application level to match the underlying 

architecture. 

• Assist vendors in developing optimized libraries of interest to NASA to ensure performance portability on 

newer models.


